
COMPUTABILITY AND COMPLEXITY 24

SPACE COMPLEXITY

AMIR YEHUDAYOFF

1. The basics

Remark. Computational complexity studies the resources that are needed to achieve
computational tasks. On a high-level, computational devices have costs (like time,
memory size, energy, randomness, training data, etc.), and computational tasks
have complexities (the minimum cost that is needed to achieve it). We now move
to focussing on space.

Example 1. What is
√

2? Can we write its digits? What is π?

Example 2. Sometimes programs run out of memory.

Example 3. What is the space complexity of “palinodromes”?

We will focus on space in the TM model.

Definition 4. The space that a TM M uses on x ∈ {0, 1}∗ is the number of
locations on the (working) tape M visits during the run on x. It is denote by
SPACE(M,x), and it could be infinite. For n ∈ N, define

SPACE(M,n) = max
x∈{0,1}n

SPACE(M,x).

Remark. Memory locations can be used more than once for free. Only the first
time a position on the tape is visited is counted. This is what distinguishes space
from time.

Remark. We do not count the access to the input tape because we want to consider
algorithms with sublinear space.

Definition 5. Let S : N→ N. We say that L ⊆ {0, 1}∗ is in SPACE(S(n)) if there
is a TM M that decides L so that

SPACE(M,n) = O(S(n)).

Recall that we introduced a powerful computational resources: non determinism
(“the power to guess correctly” or ∃).

Definition 6. The space cost of a NTM M on x is the maximum space in the run
of M on x over all (non-net.) choices. We similarly get NSPACE(S(n)).

Remark. We only deal with S(n) that are “space-constructible”. That is, there is
a TM M that given 1n as input, computes S(n) using space O(S(n)). All func-
tions S(n) from now on are assumed to be such (without explicitly stating it). All
reasonable functions are such (but not all functions are such). We shall ignore this
issue from now on.

1



2 DIKU

How is space related to time?

Theorem 7. For every S : N→ N so that S(n) ≥ log n,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))).

The first inclusion holds because in times T , a TM can visit at most T locations.
The second holds because non-determinism just adds power. The third shall follow
from the following discussion.

2. Configuration graphs

We can represent computations by graphs.

Definition 8. The configuration graph of M on x is a directed graph GM,x that
is defined as follows. The vertices are the “configuration” of the run (i.e., a vertex
v fully encodes a possible state of the computation). There is an edge (v, u) in the
graph if v is a vertex, u is a vertex and M moves from state v to state u in one
time step.

Remark. If M is deterministic, all out-degrees are one.

Remark. If M is non-deterministic, all out-degrees are at most two.

Remark. Loops in the graph correspond to computations that do not terminate.

Claim 9. M accepts x iff there is a path from the initial state to an accepting state
in GM,x.

Claim 10. Each vertex in the graph can be described using O(SPACE(M,x)) bits.

Claim 11. The number of vertices in the graph is at most 2O(SPACE(M,x)).

As was explained in the proof of the Cook-Levin theorem, the edges can be
described effectively:

Claim 12. For every TM or NTM M and x ∈ {0, 1}n, there is a CNF formula
ϕM,x so that if v, u are two bit strings (encoding potential vertices in the graph)
then ϕM,x(v, u) = 1 iff both v, u are vertices and (v, u) is an edge in GM,x. In
addition, the size of ϕM,x is at most O(SPACE(M,x) + log n).

Remark. Intuitively, the formula ϕM,x checks that v encodes a proper state, u
encodes a proper state, and the transition v → u agrees with M . The formula has
the claimed size because of the local behavior of TMs.

Proof of last part of Theorem 7. Given a NTM M and input x, we need to decide
in time 2O(SPACE(M,x)) if M accepts x or not. In other words, we need to decide if
there is a path from the initial state to an accepting state in GM,x. This can be
done, e.g., using BSF on the graph GM,x. �

Remark. This is a powerful idea. We can think of a computation as a walk in a
graph that is implicitly descried by M and x. Reachability problem are thus deeply
related to computation.

Remark. We see that basic algorithms, like BFS, help to understand things con-
cerning general TMs.



COCO 24 SPACE 3

3. Important classes

There are a few natural choices for classes to focus on:

Definition 13.

PSPACE =
⋃
k∈N

SPACE(nk)

NPSPACE =
⋃
k∈N

NSPACE(nk)

Remark. P ⊆ PSPACE.

Remark. NP ⊆ PSPACE because e.g. we can check all assignments for a formula
in polynomial space (and exponential time).

Remark. We do not know if P = PSPACE or not. But if P = PSPACE then
P = NP.

Remark. We can represent 2n objects in space n. So, allowing algorithms to run
in space n may allow them to check 2n options. This is often too costly. The
following two classes are the space analogs of P and NP.

Definition 14.

L = SPACE(log n)

NL = NSPACE(log n)

Remark (recap). Computations can be thought of as walks on huge digraphs. The
edges of the graph are, however, easily described. A computational is “accepting” if
two vertices are connected.

4. PSPACE

Remark. One of the first things to do in order to understand a complexity class
is find a “complete” problem for it.

Remark. A basic idea in this theory is that of “reductions”. Intuitively, A ≤ B
if “problem A is easier than B”. We have seen A ≤p B where the reduction
f : {0, 1}∗ → {0, 1}∗ so that x ∈ A iff f(x) ∈ B is poly-time. Later, we shall see
other types of reductions. The reductions should fit the scenario we are thinking
about.

Definition 15. A language C ⊆ {0, 1}∗ is PSPACE-complete if C ∈ PSPACE and
L ≤p C for every L ∈ PSPACE.

Remark. There is a general way to construct complete problems. For PSPACE, it
is something like

{〈M,x, 1s〉 : M(x) = 1,SPACE(M,x) ≤ s}.

But we typically want to identify more natural complete problems.

The complete problem we shall talk about is “totally quantified boolean formu-
las”.



4 DIKU

Definition 16. A boolean formula over the variables x1, . . . , xn is an expression
of the form

(x1 ∧ x2) ∨ (x1 ∨ (¬x2)).

It can be thought of as a tree (illustrate the example). Formulas can be inductively
defined as follows. Each of the expression x1, . . . , xn and 0, 1 are formulas. If f is
a formula then (¬f) is a formula. If f1, f2 are formulas then (f1∧f2) and (f1∨f2)
are formulas.

Remark. Formulas can be thought of as trees.

Remark. A formula computes a boolean function {0, 1}n → {0, 1} in the obvious
way.

Remark. Every boolean function {0, 1}n → {0, 1} can be computed by some for-
mula (in fact, by many formulas).

Remark. Formulas can be thought of as computational devices. As such, a formula
has a cost. The size of f is inductively defined: the size of the base case is 1, and
size(¬f) = size(f) and size(f1 ∗ f2) = size(f1) + size(f2) for ∗ ∈ {∧,∨}.

Remark. If f has size s then it can be described by O(s) bits.

Remark. Formulas lead to a different model of computational complexity theory;
more on this later on. In it, the devices are formulas and the complexity of a
function is the size of the minimum formula computing it.

Remark. A totally quantified boolean formula is an expression of the form

∀x1 ∈ {0, 1}∃x2 ∈ {0, 1} (x1 ∨ x2) ∧ x1.

The quantifiers Q can be either ∀ and ∃. A totally quantified boolean formula
(TQBF) is an expression of the form

E = Q1x1Q2x2 . . . Qnxn ϕ

where ϕ is boolean formula over x1, . . . , xn. It is understood that each xi takes
values in {0, 1}. Every TQBF has a truth value in {0, 1}. For example, the truth
value of the above expression is 1.

Example 17.

φ(x1, . . . , xn) ∈ SAT ⇐⇒ 1 = ∃x1 . . . ∃xnφ

Remark. TQBF capture properties that are deeply related to game theory. Let us
consider chess for example. The expression

∃w1∀b1∃w2∀b2 . . . ∃w100 white wins

says that there is a first move for white, so that for every move of black, there is a
move of white, . . . so that white wins in 100 moves.

Definition 18.

TQBF = {〈E〉 : E is a true TQBF}.

Theorem 19. TQBF is PSPACE-complete.



COCO 24 SPACE 5

Proof. We start by sketching why TQBF is in PSPACE. This is not entirely trivial
because we need to reuse space (there are exponentially many things to check).
The algorithm A is recursive. The base case is boolean formulas over 0, 1. The
algorithm A output the truth value of the input formula. The inductive step is as
follows. If the input to A is

∀x1ψ(x1)

for some (partially quantified) formula ψ, the algorithms first substitute x1 = 0
in ψ, runs the recursion and get y0 = A(ψ(0)). It writes y0 down and deletes the
working memory. The algorithms then computes y1 = A(ψ(1)) and outputs y0∧y1.
The case of ∃x1ψ(x1) is similar. The memory size is

O(the number of quantifiers plus the size of the inner formula).

It remains to prove that it is PSPACE-hard. Let L ∈ PSPACE and let M be a TM
with poly-space deciding M and fix an input x. Let

s = SPACE(M,x).

We wish to construct a TQBF ψ so that

M(x) = 1 ⇐⇒ ψ = 1.

We translate M(x) = 1 to the reachability problem in GM,x from the initial state
to an accepting state. We want ψ to capture this reachability.

How can we do that? We want to capture “there is a path”. We
have ∃ at our disposal. But how can ∀ help?

We discussed a formula ϕ = ϕM,x that computes if v, u is an edge in GM,x. In
other words, the formula

ϕ(v, u)

checks if there is a path of length one from v to u. The formula

∃w ϕ(v, w) ∧ ϕ(w, u)

checks if there is a path of length at most two from v to u.

Can we keep on going?

The answer is, on the face of it, no because the length of the desired path could be
exponential in s and so will the size of the overall formula we get. And we also did
not use the ∀ quantifier.

The main observation is that if φi(v, u) computes if there is a path
of length at most 2i between v, u, then

φi+1(v, u) = ∃w ∀a, b ((a = v) ∧ (b = w)) ∨ ((a = w) ∧ (b = u))→ φi(a, b)

computes if there is a path of length at most 2i+1 between v, u.

In words, there is some w so that φi(v, w) and φi(w, u).

We doubled the distance covered and increased the formula size by
an additive factor.

Recall that v, u, w are O(s)-bit strings. So, the size of φi+1 is at most O(s) plus
the size of φi. The final formula is chosen to be ψ = φO(s) and its size is O(s2). It
holds that

ψ(v0, vaccept) = 1 ⇐⇒ M(x) = 1.

�



6 DIKU

Remark. The theorem can be thought of saying that TQBF is “extremely hard”.
In other words, in general deciding if a player in a two-player game (like chess) has
a winning strategy is hard.

Remark. What properties of G = GM,x did the proof use? It has size 2poly(n).
Deciding the edges of G can be done in time poly(n) and space poly(n). We never
used the fact that the out-degrees are one. So it applies both to deterministic as well
as non-deterministic computations!

Theorem 20. PSPACE = NPSPACE.

The ideas we have developed, in fact, allow to prove the following general result:

Theorem 21 (Savitch 1970). If S(n) ≥ log n then

NSPACE(S(n)) ⊆ SPACE((S(n))2).

Remark. A standard picture in computational complexity looks like:

5. NL

Remark. Again, we try to identify complete problems for NL. What is the suitable
notion of reductions? Allowing reductions to run in poly-time is not suitable because
NL ⊆ P.

Definition 22. A function f : {0, 1}∗ → {0, 1}∗ is implicitly log-space computable
(ILC) if

(1) there is k > 0 so that for all x,

|f(x)| ≤ |x|k.
(2)

{〈x, i〉 : f(x)i = 1} ∈ L.

(3)

{〈x, i〉 : i ≤ |f(x)|} ∈ L.

Remark. The first item says that f does not output very long strings. The other
two items say that we can compute in log-space the i’th bit of f(x) as long as it
makes sense.

Definition 23. We write A ≤` B if there is an ILC f so that for all x, we have
x ∈ A iff f(x) ∈ B.

Remark. This type of reductions satisfy the following two natural properties:

(1) If A ≤` B and B ∈ L then

A ∈ L.



COCO 24 SPACE 7

(2) If A ≤` B and B ≤` C then

A ≤` C.

This is intuitive but not obvious; space must be reused here. The details are left as
an exercise.

Definition 24. A language C ⊆ {0, 1}∗ is NL-complete if it is in NL and for every
L ∈ NL we have L ≤` C.

Theorem 25. The language

PATH = {〈G, s, t〉 : G is a digraph, s, t ∈ V (G), there is a path from s to t}
is NL-complete.

Remark. We shall not fully prove but we have seen all ideas. First, PATH ∈ NL
because we can guess the path from s and accept only if we reach t. In this process,
we “forget the history”. Second, if L ∈ NL then there is a NTM N that decides it
that uses log-space, so we can define a reduction:

f(x) = 〈GN,x, v0, vaccept〉.


	1. The basics
	2. Configuration graphs
	3. Important classes
	4. PSPACE
	5. NL

